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Abstract

Information gathering efforts are routinely organised to get information

about fugitives, help people during crises or during search and rescue mis-

sions. The success of any information gathering effort is largely dependent

on the environment it is carried out in: for example, search efforts in hostile

environments are unlikely to succeed compared to those in friendly areas.

Also, well-planned and organized cities might be easier to search compared

to ill-planned or disorganized cities.

This thesis introduces a new way of measuring the difficulty of informa-

tion gathering: the eigenvector centrality distribution of the dual graph of

a city’s road network; this measures the probability that a random walker

stumbles on the information desired. Empirical analysis of these distribu-

tions provided us with a basis for comparision and identifying trends.

Results show that it is significantly easier to search and retrieve infor-

mation in North American cities compared to European and Asian cities.

Also the younger a city is, the less difficult it is to search. Finally, we show

that city structural forms (planned, unplanned and partly planned) have no

effect on the difficulty of finding information.

These results can be applied in urban planning and development, disaster

response and diffusion modelling. Moreover, since potential hotspots can be

easily identified, our model can be used in monitoring crime and search and
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rescue missions.
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CHAPTER 1

Introduction

1.1 Introduction

Knowing the complexity of a city with respect to the difficulty of finding

information or ease of navigation will come handy in a lot of scenarios: for

people working in unfamiliar terrain, during relief planning sessions and for

security purposes. Even though the topology of the city might have been

altered by its development, crises or growth, the kernel of the city’s structure

will typically remain unscathed.

A lot of researchers have studied the complexity of cities and currently

there are platforms that solve some of the problems of large scale information

gathering, filtering and verification. However, to the best of our knowledge,

there is no platform that solves or provides a model for the problem of

targeted information gathering.

This thesis fills this void: it provides a model for the problem of targeted
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CHAPTER 1. INTRODUCTION 2

information gathering by trying to measure the difficulty of finding a target

at random in cities. This is done by measuring the likelihood of a random

walker in these cities finding the desired object.

We examined the complexity of various cities around the world. Using

dual graph representations of city road networks, we calculate the various

metrics of these graphs and then analyse these graphs to determine if we

can find intrinsic qualities that explain why some cities are more complex

or difficult to search than others.

Two recent targeted information gathering competitions provided the

motivation for this research: the tag challenge [46] and the red balloon

challenge [40]. We seek to find out if there is some city characteristic that

explains why the culprits were found in some cities and not in others.

Our results eventually corroborate our assumptions about the data as

we show that these cities are quite difficult to search. We also show that the

age of a city and its location might determine how easy it is to search: North

American cities are typically easier to search than European and Asian cities

while younger cities tend to be easy to search too.

1.2 Thesis Structure

This thesis is structured as follows: chapter one provides an introduction,

chapter two describes the challenges of information gathering and the mo-

tivation for our study while chapter three provides a literature review of

related work and complexity measures. We present our methods in chapter

four: our data, processing framework, approach and processed data char-

acteristics. Finally, chapters five and six describe our experimental results

and provide the conclusion respectively.



CHAPTER 2

Background

2.1 Introduction

Disasters, man-made and natural, cause large numbers of casualties, dam-

age infrastructure and displace large populations. In recent times, tsunami,

hurricanes, riots, protests, floods and acts of terror have all caused some de-

gree of discomfort or disrupted normal life patterns in several communities.

The measured impacts of crises are severe: in 2011, natural disasters caused

more than 30000 fatalities, created over 240 million victims and led to eco-

nomic damages worth 366 billion US dollars [16]. In 2010, the estimated

loss due to natural disasters was about 120 billion US dollars [17].

Crises can change the topography of a region and induce huge popula-

tion displacements as affected individuals seek refuge; consequently, existing

maps and data are rendered obsolete. Thus, one of the most critical needs of

relief agencies during and after crises is accurate information: rapid access

3
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to reliable estimates of casualties and needs, damage to infrastructure (such

as roads, power and medical services) and security evaluations of affected

areas is essential. Such information is required in planning relief efforts, dis-

tributing resources (aid packages and rescue teams) and estimating resource

requirements [18, 10].

However, information gathering processes in disaster management and

recovery policies have three flaws: they ignore local informants in infor-

mation gathering and situation evaluation, rely on inefficient and extended

relays of information from a few trusted sources and focus on the use of

overstretched and possibly damaged emergency facilities [18].

Information-gathering efforts by aid organizations usually employ ap-

proaches such as questionnaires, interviews and field deployments; eye-witness

reports are usually deemed untrustworthy by relief organizations unless veri-

fied by known experts [56]. This disregard for unsolicited live reports coupled

with the overt reliance on a few - and possibly overburdened - experts leads

to situations of outdated or incomplete situational awareness.

Since most crises are emergencies which require near-immediate action,

agencies are in a dilemma: retrieving information from crises’ sites might

cause delays which might be too costly (e.g. loss of lives, economic dam-

age) while acting “blindly” based on unconfirmed information (which might

eventually turn out to be false, selfish or even malicious) is also undesirable.

A unifying response common to all disasters is the establishment of relief

campaigns and efforts. These typically attempt to alleviate the sufferings of

the affected populace, limit further damage to humans, animals and environ-

ment and help them to become re-integrated into their normal lives after the

crisis is spent. These campaigns usually have broadly similar informational

needs and face the same challenges.
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2.2 Informational Tasks During Crises

This section provides a broad overview of the informational tasks that have

to be carried out during crises, their associated challenges and existing so-

lutions.

2.2.1 Large-scale Information Gathering

The proliferation of mobile Internet-ready devices has changed the dynam-

ics of modern-day interactions, communication and information diffusion.

Social networks, which have now become an essential part of our daily lives,

enhance information dynamics by connecting people. Online activity on

these platforms span business meetings, re-unions, hanging out with friends,

fund-raising and humanitarian efforts. Also, most users of these social net-

works are comfortable with sharing their views and opinions or those of close

friends online.

These developments have led to the emergence and growth of communi-

ties that effectively share information and have established regulatory mech-

anisms (which might be explicitly specified or implicit). During important

events, these communities serve as channels for the rapid propagation and

diffusion of information by leveraging social ties and the small diameter of

the entire network; members pool information from a variety of sources and

spread new information to close acquaintances.

This rapid propagation of information makes it possible to get near real-

time reports of events regardless of the location or state of the affected

people (people living in remote areas and/or urban places with severely-

crippled infrastructure due to natural disasters or censorship). This capa-

bility is extremely useful and can be applied to a number of scenarios (e.g.

emergencies) requiring quick responses and decision making based on noisy
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crowd-generated and not-yet-verified information.

Palen et al. in [37] state that information communication technology

(ICT) tools can be used during crises to recruit volunteers, verify claims

and broadcast information. Palen et al. [38] also studied online activity

with respect to the 2007 Virginia Tech massacre; they found out that crowd-

sourced information was 100% accurate and was available long before the

official statement by the school.

Online communities have been used to successfully used to track and

monitor disasters like wildfires [60], hurricanes [25], floods [59], earthquakes

[50, 11] and epidemics [30]. Twitter activity data has also been used to mon-

itor US political conventions [25] and emerging trends [32]. The potential

of these platforms for information generation is amazing: during the 2011

Virginia Earthquake, tweets were posted at a rate of 5500 tweets per second,

similarly there are 4.7 million tweets related to the Chilean earthquake [19].

“Live” reports generated by eye-witnesses and bystanders are of immense

value during crises; they can be used by relief organizations who need to

rapidly plan and coordinate relief efforts. They also provide a means for

affected people to reach out to their loved ones as well as serve as “unverified”

information sources to traditional media institutions.

Ushahidi1 (a Swahili word for testimony) is a popular and successful

disaster response platform based on crowd-generated reports. This open-

source platform has been used to monitor and collect information about

elections, civil unrest, disease tracking and emergency response in a lot of

countries [15]. It also incorporates visualization tools which aid decision

making.

During the 2010 Haitian Earthquake of 2010, volunteers worked assid-

1www.ushahidi.com

www.ushahidi.com
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uously to create an accurate map of the stricken areas on openstreetmap2

in less than 48 hours. This large-scale information gathering effort was so

successful that a lot of aid and relief agencies switched to the maps created

by volunteers [21].

2.2.2 Information Credibility

Credibility ratings are directly dependent on how the informed person per-

ceives and judges the information he is receiving; although some characteris-

tics of this information might influence the reader’s opinion and judgement.

For example, information from proven media sources are typically held to be

credible due to the strict and rigorous editorial processes employed by such

organizations; moreover, most media organizations are household names and

are accepted as authentic sources by a large number of people.

Credibility Models

The Fogg’s prominence-interpretation theory is a credibility model that at-

tempts to explain how people assess the credibility of websites [13]. Promi-

nence is determined by the visibility of online content while interpretation

is related to how users evaluate and understand online content. Fogg also

listed a couple of factors including motivation, skill levels, context, culture

and browsing environment as influencing the user’s perception of credibility.

In [48], Ratkiewicz et al. posited that the spread of rumours in social

networks differs from Rapoport’s viral model [47] of infectious disease prop-

agation. According to [48], the plausibility of a rumour to a node is pro-

portional to the number of its neighbours who believe the rumour is true.

Once the number of infected nodes in a network exceeds a certain threshold,

2www.openstreetmap.org

www.openstreetmap.org
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the entire network is compromised and the rumour is seen as credible/true.

As such, rumours might eventually turn into “accepted facts” by virtue of

their propagation in networks. This model explains the notion that popular

belief is usually accepted as being true.

Online Information Credibility

People are more likely to view information that is widespread or from an

acquaintance as true and subsequently re-broadcast it within their own net-

works [26] (i.e. inform their connections, thereby setting up new information

cascades). Accordingly, once a certain percentage of the connected popula-

tion is compromised and tricked into believing false news; misinformation

campaigns can become difficult to stop due to the diffusion of the informa-

tion by unwitting participants.

Self-interested and malicious agents can thus exploit the information

diffusion characteristics of social networks to successfully subvert such in-

formation gathering efforts; this can lead to misinformation campaigns, the

spread of rumours or smears and compromise highly-needed aid efforts in

crises scenarios. Such attacks, if properly coordinated using the appropriate

techniques (targeting, viral spread, proper phrasing etc.), can successfully

change the perception of the public about some event. For example; in 2009,

nine fake accounts were used to initiate a successful smear campaign against

one of the Massachusetts senatorial aspirants [34].

Earle [11], also proved that the same properties of Twitter that make it

easy for users to spread news about currently-happening disasters also make

it easy to spread false stories and rumours and misinform people. Mendoza

et al. [33] in their work on the Chilean earthquake highlighted the challenges

of using community-sourced information. They found out that reports were
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rife with rumours and misinformation; however, false information came un-

der more scrutiny by users than true reports.

To combat these issues, most community sites now employ corrective

mechanisms such as moderation and flagging to cope with the high variance

in online media accuracy. As such, the quality of content curated on these

sites tends to improve over time as errors and inaccuracies are removed.

The October 2007 wildfires in Southern California provide an example

of information verification; administrators of the community site rimofthe-

world3 collaborated with local authorities in disseminating and verifying in-

formation. Furthermore, they conducted physical investigations of damage

caused by the fires and shared it online [55].

2.2.3 Coordination and Task Distribution

Crises cause distress in people - they can bring out altruistic behaviour in

people or even worse behaviours such as looting, mob actions etc. Once the

initial shock is over, affected people have to fix their disrupted life patterns

or live with the effects of the crisis.

The use of social media and the Internet is not limited to information

retrieval alone; it has also made it possible for volunteers who are thousands

of miles away from disaster epicentres to contribute and help in relief efforts.

Whereas physical recruitment is constrained by a number of limits, online

participation is virtually limitless. Such volunteers assist with recruiting

other volunteers, translating messages and helping with requests [21].

Studies of humans under crisis show that they are typically level-headed

and work towards helping one another and recovering from the disaster. In

the immediate aftermath of crises, human groups form amongst the affected

3www.rimoftheworld.net

www.rimoftheworld.net
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populace with the aim of providing help to seriously-wounded, evacuating

feeble members and helping to provide security [45]. Thus, it is possible

to employ these citizens in recovery efforts or task distribution during such

situations.

In [44], the authors reported the results of an online survey carried out

on a population of people displaced by Hurricane Katrina. They showed

that the affected people sought to establish communities online and used

these communities to find emotional support by connecting to people who

had been through the same ordeal. Other online support communities of

the same dedicated to the distribution of aid also emerged [57].

The Sahana Foundation4 produces software platforms for this purpose;

their open-source software offers support for tracking and categorizing af-

fected people, monitoring their needs and matching donors to requests.

2.2.4 Information Filtering and Data Extraction

With the ubiquitousness of mobile devices and Internet access, it is easy for

get live reports based on the observations of people in affected areas. This

information is then shared and distributed over the Internet. A shortcoming

is the difficulty in making sense of such huge streams of information from

multiple sources. Most reports come in a wide variety of formats (including

structured and unstructured information); this makes filtering for specific

information or synergizing content challenging.

Although traditional media such as newspapers and TV stations provide

general awareness about events as they happen and can provide structured

easy-to-use data, their reports are sometimes sensationalized, exaggerated

and not detailed enough to plan recovery efforts [53]. They might also be

4www.sahanafoundation.org

www.sahanafoundation.org
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biased towards more popular areas or items, ignore relatively undeveloped

areas or miss out on certain areas in their coverage [55]. Official repositories

of information which provide extensive coverage suffer from slow updates;

disaster scenarios render these sources outdated making them useless to

information seekers and crisis-stricken people.

The crowdsourced disaster response team that used crowdflower5 pro-

vides an example for this category. The team was able to create a flexible

and easily scalable platform which was successfully used in translating, fil-

tering and geo-tagging messages originating from Haiti; a volunteer task

force made up of people from all over the world provided the manpower

needed [22].

2.2.5 Targeted Information Gathering

New behavioural patterns emerge during crises - volunteer relief efforts by

compassionate people, collaborative efforts to find survivors or compile lists

of affected people and locations, adoption of new technology and new com-

munication and interaction patterns.

Thus, every new crisis brings along a new digital trace of information

available in the form of text messages, emails, blog posts, tweets, online

communities, social groups and other custom fora.

2.2.6 Challenges of Information Gathering

The main challenges regarding information generation during crises mostly

revolve around trust, accuracy and reliability. Other minor issues include

quality and objectivity of reports, misinformation by malicious agents, han-

dling huge rates of information flow and language barriers.

5www.crowdflower.com

www.crowdflower.com
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Another issue is the absence of a central repository to which user gener-

ated reports can be submitted; such a pool which should have independent

verification and filtering capabilities will provide the disparate aid organi-

zations with data. This will eliminate the duplication of efforts and aid

deployments.

Table 2.1 provides a summary of the various categories, challenges and

existing solutions for tasks in crisis response.

2.3 Motivation

This study traces its roots to the tag challenge [46] which provides an ideal

example of a targeted information gathering scenario. The winning strategy

involved a recursive reward mechanism that incentivized inhabitants of those

cities to look out for the five “culprits”. Despite the appeal of monetary

reward, only three culprits were found by all participating teams.

Consequently, we seek to understand why the culprits were found in

certain cities and not discovered in others; we posit cities share common

latent characteristics that explain this phenomenon. The difficulty of finding

a person in a city depends heavily on the complexity of the city’s road

network, this in turn determines how much information is needed to search

the city.

Also, to the best of our knowledge, the targeted information collection

category is the only informational task category without any readily avail-

able solution; all other categories have platforms that attempt to solve or

mitigate the challenges. We assume that this is probably due to the chal-

lenge of modelling the situations involved.

Thus, by analyzing information networks of various cities including the

cities of the tag challenge, we aim to model their complexities and identify



CHAPTER 2. BACKGROUND 13

Large scale
information
gathering

Information
filtering and
verification

Coordination
and task
distribution

Targeted
Information
Gathering

Description Mapping hit
areas.

Crowd-
sourcing In-
formation.

Gathering
informa-
tion about
events.

Citizen
Journalism.

Extracting
information
from lots of
noisy data.

Filtering
repositories

based on
credibility

Assigning
tasks to
volunteers.

Monitoring
logistics.

Integrating
feedback
from field
reports in
planning

Specific
requests

such as the
location of a

point or
information
about the

where-
abouts of a
person.

General
Questions

about some
event or
place.

Challenges Volunteers.

Access
to the Inter-
net.

Collection
of Infor-
mation in
transit.

Retrieving
information
from remote
areas, con-
flict zones,
censored
regions and
places with
damaged in-
frastructure.

Availability
of data,

computa-
tional power

and
methods.

Information
obsolescence

and
redundancy.

Unstructured
and widely-

varying
information
formats.

Communication
vis-a-vis
cultural

differences
and

language
barriers.

Access to
accurate
information,
Misinfor-
mation and
sabotage

Urban
complexity.

Existing
Solutions

Ushahidi,
Twitter,
Open-
StreetMap,
Smartphone
apps

Swiftriver,
Storyful

Sahana,
Crowd-
flower,
Mechanical
Turk

???

Table 2.1: Informational Tasks in Crisis Response
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trends and patterns based on interactions between their components.

Our approach differs from existing work based on information networks

of cities; not only do we do a large scale analysis of a lot of cities, we also

factor in the effects of other variables that characterize cities such as its

population, age, location. This, we believe, gives a more holistic image of

the city’s culture and fabric.



CHAPTER 3

Measuring Urban Information Gathering Complexity

3.1 Introduction

Cities form an integral part of human history and continuously sustain the

development of new ideas and efforts. In early times, human settlements

were simple and scattered; however cities have grown and become more

complex.

The growth of cities can be viewed as an evolutionary process: settlers

cluster around some desirable location e.g. an oasis, a port, a stop on a trade

route or a refuge. Over time, more settlers arrive leading to the expansion of

the settlement and the creation of more buildings, roads and infrastructure.

This cycle is then repeated indefinitely.

The growth and development of cities might be planned or unplanned:

some cities are designed to have highly-regular patterns while others grow

haphazardly. In planned cities, it is possible to describe the network pat-

15
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tern (it could be a grid network or a series of concentric circles); on the

other hand, there is usually no way of describing the intrinsic patterns of

unplanned cities. Fig. 3.1 shows some layout patterns.

Cities are complex entities that encompass interactions amongst multiple

interacting agents with varying needs. The factors influencing the complex-

ity of a city include its size, population, age and shape; other factors such

as the city’s type, location, inhabitants’ culture etc. also contribute to the

overall complexity. Emerging needs such as urban area planning, social and

demographic requirements, security measures, mobility patterns, accessibil-

ity measures and resource distribution dictate a need to fully understand

the dynamics of cities and the factors influencing them.

Since city networks are complex networks [35], it is possible to apply

graph theoretical models and principles from network science methods in

analysing and solving city challenges. The use of concepts from network

theory provides researchers with robust tools and a platform for evaluating

cities with respect to their complexity and structure.

(a) Grid layout (b) Hub layout (c) Star/Spoke layout

Figure 3.1: Sample City layouts
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3.2 Related Work

Complexity studies of cities cover a diverse range of fields including but

not limited to city representation models, analysis of network properties,

complexity evaluations, algorithmic proofs of representation formats and

complexity evaluations. The various categories are described in the following

sections.

3.2.1 City Network Analysis

These studies measure the various characteristics of city networks to de-

tect latent relationships between nodes and to characterize cities exhibiting

certain properties.

Crucitti et al. [8] did a thorough evaluation of 5 different centrality

distributions for 1-square mile samples from 18 different cities, with each

city represented as a primal graph. Their results showed that some of the

centrality measures (e.g. closeness, betweenness and straightness) were sim-

ilar for all cities however two centrality measures had varying distributions

across the 18 city samples. They ultimately found out that self-organized

cities conformed to a power-law model and differed from planned cities.

Strano et al. in [54] investigated the structural and network properties

of 10 primal graphs of European cities: they carried out a principal com-

ponent analysis of the centrality distributions of the various cities first, and

then identified clusters by measuring the Gini coefficients of the centrality

distributions. The cities had broadly similar structural characteristics even

though they had distinctive geometrical features.

Buhl et al. carried out a topological analysis of a large number of urban

settlements in [7]; their study used graph-theoretic principles to analyse and

study the growth, evolution and functioning of various unplanned areas.
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They discovered that urban settlement patterns were efficient and more

robust to failures.

Other work in this area include the detection of similar clustering pat-

terns in cities [4, 9] and the identification of the defining characteristics of

urban city networks using a primal graph representation [20].

3.2.2 Evaluations and Comparisons

Researchers in this area typically evaluate some metrics for a variety of cities

or compare network metrics based on some criteria.

In [43], Porta et al. applied a novel network assessment method to

the problem of urban design. Their framework, which considered spatial

distances and various centrality measures on primal graphs, was successfully

used to select the best option from two design scenarios.

Building on work done on centrality distributions of cities, Scellato et

al. [51] identified the skeletal street networks (named backbone) that were

essential to a city. City backbones are calculated by building spanning trees

based on the edge betweenness and information characteristics. They ex-

tracted the backbones for two different cities and were able to show how the

backbones influenced mobility patterns, crime distribution and commercial

activities.

Jiang et al. [27] carried out a comprehensive topological analysis of areas

derived from 40 American cities. They found out the dual graph represen-

tations of these networks using the street-continuation principle exhibited

scale-free behaviour and the small-world phenomenon with respect to street

length and degree. Earlier work by [28] however showed that dual graph

representations based on the named street approach exhibit the small-world

behaviour and not the scale-free behaviour.
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Masucci et al. [31] analysed the dual and primal graph representations

of London. Using a benchmark of three artificially-generated graphs, they

found out that the London graph exhibits self-organizing properties.

Porta et al. in [42] found differences between heterogeneous and homoge-

neous cities; they also advocated the use of the primal graph representation

for the network analysis of cities.

3.2.3 City Graph Representation Formats

There are two major classification formats and each has its strengths and

weaknesses.

Primal Graph Representation

The simplest and probably the most intuitive way to represent road net-

works is the primal representation. Intersections and road end points are

represented as nodes and the roads between these points are identified as

edges [3, 42]. Distances between physical locations are the costs of traversing

any edge in these networks. The main strengths of this approach are its wide

adoption, ease of use and simplicity. However, networks represented in this

format might not exhibit certain behaviours such as scale-free properties.

The primal graph can be defined as G = (V,E) where ∀i, j ∈ E; eiej ∈ E

if there is a road between the endpoints i and j; otherwise i ∈ V where i is

an endpoint or intersection.

Dual Graph Representation

The dual representation is based on the space syntax methodology [23] which

focuses on the accessibility of a particular space from other spaces in the

same network. The accessibility of a space from another space is defined
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as a journey that has the fewest changes in direction or requests to seek

information [24]. Space syntax has emerged as a great way to use graph-

theoretic measures to quantify the complexity of cities.

This representation format is unorthodox and not as intuitive as the

primal representation: roads are represented as nodes and their intersections

are the edges in the network [41]; it has also been called the information city

network [49].

Thus, given a road network, we define the dual graph as G = (V,E)

where ∀i, j ∈ E; eiej ∈ E if roads ei and ej intersect; otherwise ei ∈ V and

ej ∈ V .

A major challenge associated with using the dual graph representation

is the issue of preserving street identity over long distances. The use of

street names as a criteria for merging roads was used by [28] in identifying

similar streets. Another method to preserve street identity is the Intersection

Continuity Negotiation (ICN) [41] which collapses streets based on the angle

between their edges.

Errors can be introduced while using these methods: the named-streets

approach might merge unrelated streets that have the same name while the

ICN approach might merge streets that are totally unrelated.

Figs. 3.2 and 3.3 show the actual and dual graph representations for a

section of Abu Dhabi.

Criticism of Representation Formats

Criticism of the dual graph approach include the bias inherent in the graph

creation process, the absence of a limit on the number of edges a node

might have (this happens because of the subjectivity in the graph construc-

tion phase and as such some roads might have extremely high number of
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Figure 3.2: Map of a section of Abu Dhabi

edges) and the absence of distance information in such representations. How-

ever, this representation format brings out latent properties of such networks

(such as scale-free behaviour) due to the possibility of having a node with a

high number of edges since edge numbers are not limited, which might not

be observed in primal graph representations.

3.2.4 Miscellaneous

Another interesting piece of work was done by Turner et al. [58] who defined

an algorithmic framework for defining axial maps of axial spaces as defined

by [23].

Omer in [36] departed from the orthodox use of centrality measures as

a yardstick for graph complexity analysis and instead innovated a multi-

perspective approach that combined graph theory and Q-analysis. This

enabled them to factor in multi-dimensional chains of connectivity and led to

the discovery of patterns and relationships between city structural qualities



CHAPTER 3. MEASURING URBAN INFORMATIONGATHERING COMPLEXITY22

Figure 3.3: Dual Graph Representation of the same section of Abu Dhabi

and global image.

3.3 Complexity Analysis

One of the most challenging tasks in complexity analysis is determining if

a particular system is complex and if it is, measuring its complexity. To

compare systems, there is a need to have a yardstick. Existing yardsticks
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include biased and subjective human ratings based on heuristics, intrinsic

system parameters, properties or characteristics and information content.

3.3.1 Measuring Information

The amount of information that is known about a system can be used as a

measure of its complexity. There are two major schools of thought regarding

information theory: the first group views information availability as a mea-

sure of complexity while the second group views information as a relative

measure derived by comparing the information values of several complex

systems.

The first group follows the approach of Claude E. Shannon who defined

entropy as a measure of information and complexity in his seminal paper

[52]. The other school of thought which derives from Solomon Kullback,

however, uses relative measures of information.

The major difference between both measures is the fact that the Shannon

measure quantifies uncertainty while the Kullback measure is a measure of

information gain [12]. However since the Kullback measure requires a prior,

the Shannon measure has the added advantage that it is not affected by

event ordering.

3.3.2 Entropy

Entropy, an abstract quantification of information, is a fundamental measure

in information theory; the entropy of a distribution is a measure of the

expected value of the information that can be derived from the distribution

and this can be used in estimating the complexity of systems. Entropy values

depend on the size of the system and the event probability distribution; as

such, systems with a large number of possible events tend to have higher
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entropy values.

Entropy, Information and Search Complexity

Assuming we want to know how much information we can gain from the

probability distribution of a set of possible events. The occurrence of less-

likely events (events with an exceedingly small chance of occurrence) reveals

a lot of information; conversely, when likely events (events with high proba-

bilities of occurring) happen, the information gained is small. More lucidly;

if an event occurs with probability 1, then the information gained by know-

ing that the event occurred is 0.

Thus, the information gained by the occurrence of an event is inversely

proportional to the probability of that event occurring, highly-likely events

reveal lower information and low-probability events give high information.

We can go ahead to state the characteristics of Information I with in terms

of an event e which has a probability p of occurrence.

1. The Information associated with any event is never negative i.e.

I (p) ≥ 0. (3.1)

2. If an event is certain to occur i.e. the probability of its occurrence is

1, then the information gained when that event happens is zero.

I (1) = 0. (3.2)

3. If independent events occur, the information gained from these events

occurring is the sum of the individual information values for each event.



CHAPTER 3. MEASURING URBAN INFORMATIONGATHERING COMPLEXITY25

I

(
n⋂
i=1

Pi

)
= I (p1) + I (p2) + ...+ I (pn) (3.3)

Where
n∑
i=1

Pi = 1 (3.4)

4. Information is inversely proportional to an event’s probability of oc-

curring.

I (p) ∝ 1

p
(3.5)

Based on the criteria listed above, the information gained when two

independent events happen is inversely proportional to the product of their

probabilities.

I (p1 ∩ p2) ∝ 1

p1p2
(3.6)

However, this value must be equal to the sum of their individual infor-

mation values:

I (p1 ∩ p2) = I (p1) + I (p2) (3.7)

The only mathematical function that satisfies all these criteria is the

logarithmic function. Thus, we can calculate the information gained when

an event e with a probability p of occurrence happens as:

I (p) = log(1/p)

= − log(p)
(3.8)

The entropy of a system is the information associated with the distribu-

tion of its values, this is the expected value of information for each event in
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that distribution. Entropy, H, can thus be mathematically specified as:

H (X) = E[I (X)]

=
∑n

i=1 P (xi) I (xi)

= −
∑n

i=1 P (xi) logP (xi)

(3.9)

3.4 Graph Centrality Measures

Graph properties that are typically used in graph analysis include the aver-

age node degree, the diameter of the network, average path distance, shortest

path length, clustering and the various centrality measures [41].

Centrality measures are used to estimate the importance of nodes or

the influence nodes exert on one another; the concept first appeared as a

measure of relative importance in Bavelas seminal paper [5]. However, over

the years, refinements have been made and this concept has been extended

to other fields. Centrality measures now take into consideration the whole

of range of values in the community and not just individual values [43].

3.4.1 Degree Centrality

This measures how well connected a node is in the network and is the number

of the other nodes that the node is connected to. High-degree nodes in a city

road network representation are typically arteries or very long roads with a

lot of intersections.

The degree centrality of a node in a graph is its degree while the degree

centralization of a graph is a measure in the variation of centrality values for

each node. The degree centralization of a graph G containing N nodes with

respect to its constituent node degrees can be calculated using the general

centralization formula defined by Freeman in [14] as:
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CD (G) =

∑n
i=1[CD (nmax)− CD (ni)]

(N − 1)(N − 2)
(3.10)

where CD (nmax) is the highest node centrality value for the Graph G.

3.4.2 Closeness centrality

The closeness centrality of a node is an estimate of how close the node is to

other nodes along the shortest paths possible in the network.

For a graph containing N nodes, the closeness centrality of a node n is

given as: [61]

CC (n) =
N − 1∑

m∈G;m6=n dmn
(3.11)

where dmn is the shortest path between nodes m and n.

3.4.3 Betweenness Centrality

The betweenness centrality of a node is the ratio of all shortest paths that

pass through that node to the total number of possible shortest paths in the

network. It measures the relative importance of any node in the network

with regards to information flow. Nodes with high betweenness are essential

nodes in any network as they link up disparate segments of the network.

The betweenness centrality of node n in a graph G is given as: [61]

CB (n) =

∑
j,k∈G;n 6=j 6=k|djk (n)|/|djk|

(N − 1)(N − 2)
(3.12)

where

|djk| is the number of shortest paths between nodes j and k

|djk (n)| is the number of shortest paths between nodes j and k that
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contains node n.

3.4.4 Eigenvector Centrality

This is a measure of the influence a particular node has in the network or

the importance associated with it. It is based on the premise that being in

a cluster of highly-important nodes or being close to such clusters will lead

to higher influence values and vice versa.

This is calculated as: [6]

CE (n) =

∑
m∈GMmnem

λ
(3.13)

where M is the adjacency matrix representation of the graph G.

This can also be written in matrix notation as:

nλ = Mn (3.14)

where n is the eigenvector of M and its associated eigenvalue is λ.



CHAPTER 4

Methods

4.1 Introduction

This chapter describes the experimental dataset, processing framework, the-

oretical approach and characteristics of the processed data.

4.2 Experimental Data

4.2.1 City Road Network Dataset

The city road network data used in this study were gotten from open-

streetmap1 XML exports. Openstreetmap is an online crowdsourced plat-

form that allows volunteers to edit and update a map of the world with

information such as roads, streets and places.

The XML exports describe geographical areas using three fields: Nodes,

1http://openstreetmap.org

29

http://openstreetmap.org
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Ways and Relations. Nodes are points on the map and contain geographical

information such as latitude, longitude and tags for extraneous data; Ways

represent roads or buildings; a way is a collection of all nodes that make up

a road or fall within the boundaries of a building, ways also have a tag field

for extra information like street names or type; lastly, Relations, which are

a collection of nodes and ways, are used to describe relationships between

entities.

The openstreetmap dataset suffers from the inclusion of poorly-labelled

streets in export files, inconsistent street naming conventions and extensive

segmentation of streets.

4.2.2 Data Processing

The creation of Way and Node object representations enabled the parsing

of the XML dumps into memory. However, this simple representation was

noisy and contained unneeded information; thus it had to be converted into

a useful and accurate graph model.

The first task was to combine the various parts of segmented roads using

the named-street approach [28]. The major shortcoming of the named-street

approach is that it can merge streets which share the same name but are in

different places. To eliminate the potential mismatch of unrelated streets,

our method only merges intersecting streets which have the same name -

intersecting roads are defined as roads which have at least a geographical

coordinate in common - this approach leads to accurate merges once both

conditions were met.

The XML exports for cities usually included locations outside the cities.

We retrieved the geographical coordinates for each city by making requests

to the Google Maps API and used these coordinates to build bounding
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Figure 4.1: Architecture of City Processing Framework

boxes. The resulting city XML data (after the merge of segmented roads)

was further refined by filtering out roads and locations that were outside the

bounding boxes.

A last round of filtering was carried out to remove unwanted types (e.g.

buildings) before undirected dual graph [41, 49] networks were generated.

These dual graphs were built by converting the collapsed roads to nodes,

finding intersections based on shared geo-spatial points between roads and

then creating edges based on the intersections.

The resulting graphs were filtered to remove isolated nodes, analysed for

scale-free characteristics and then passed on to the analysis framework.

4.3 Processing Framework

This section describes the architecture of the custom software framework

built for the experimental analysis. The framework’s modular design and

data exchange format makes it easy to extend. Fig. 4.1 shows a high level

overview of the platform.
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4.3.1 Modules

Cleaner Module

The cleaner module consists of tools and utility functions to process the

XML representation of each city. Each XML graph of the city is parsed into

a city object in Python.

This module first collapses all intersecting roads in the XML file that

have the same name into a single road. The iterative merge process is

repeated until there are no more segmented roads in the XML dump; this

occurs when the number of streets in the dump converges and does not

change on successive collapses.

The next process is the filtering stage where all the outlying nodes which

fall outside the boundaries of the cities are removed; all extraneous infor-

mation is also removed.

The results of the merge and filter operations are used to create a dual

graph representation of the city network; this is done by creating nodes for

each road and creating edges when two roads intersect. The resulting graph

is output from this module.

Core Module

Graphs gotten from the cleaner module are passed to the core module and

it removes isolated nodes i.e. nodes with a degree of zero. The following

metrics are then calculated for the resulting graph: the number of edges,

number of nodes, graph clustering, total degree, average degree, size of the

giant component, Freeman centralization and the number of connected com-

ponents.

The graph’s eigenvector centrality distribution is calculated using the
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networkx2 function. The function employs a power iteration model with an

iteration threshold of 1000, cities that do not converge are ignored.

The entropy, Gini coefficient, coefficient of variation of the eigenvector

distribution are then calculated and stored. To remove bias and generate a

uniform basis for evaluating the various cities, a completely connected graph

was used to normalized the city metrics. In the completely connected graph,

all nodes have the same eigenvector centralities.

Plotter Module

The plotter module contains functions for fitting power law models to city

degree distributions as well as for generating scatter plots, logarithmic/semi-

logarithmic scaled plots and statistical plots. It is also flexible enough to

create clusters based on user-supplied information.

Framework Module

This automates the entire process by turning it into a batch processing op-

eration. Users specify the directory containing the OSM files, configuration

options (e.g. what plots are to be generated) and graphing information.

The framework reads these values and generates outputs when the process

is completed.

Utilities Module

This contains a variety of helper functions that help with the following tasks:

CSV conversion, OSM file handling, Geographical distance calculation, City

object serialization and deserialization, cluster extraction and information

retrieval.

2http://networkx.lanl.gov

http://networkx.lanl.gov
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4.3.2 Processing Metrics

Initial runs of the processing framework had to be terminated after the

system ran out of memory; a rewrite of the platform focused on optimizing

memory and removing extraneous information. Test runs of the optimized

platform used about 14GB of memory; a 50% reduction compared to earlier

versions.

A full run of the platform for 148 cities graphs retrieved from the Metro

Dumps3 took about 10 hours.

4.4 Approach

We have defined a method for analysing the complexity of city road networks

by modelling the roads in a city as an undirected dual graph. The roads in

a city are gotten by filtering openstreetmap city XML dumps and removing

all extraneous information like buildings and landmarks.

Calculating the eigenvector centrality of this graph gives a distribution

of the relative importance of each node based on the influence it exerts on

the network. Normalizing this distribution gives a probability distribution

that still mirrors the importance of each node.

Inequalities in this distribution of eigenvector centralities can be cal-

culated by finding the entropy and Gini coefficients of such distributions.

To remove the bias caused by variance in city sizes, the entropy values are

normalized against fully connected city models of the same size. The fully-

connected city model is a hypothetical city in which there are intersections

between every node pair; it is trivial to search this city: every location is

just one hop away.

3http://metro.teczno.com/, accessed 25th January, 2013.

http://metro.teczno.com/
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These abstract models have maximum entropy values and can be used

to measure the complexity and difficulty of search in the actual city. The

normalized entropy is the ratio of the entropy value for the original city to

that of its hypothetical fully-connected model.

Cities with high normalized entropy values will typically be well-laid out

cities; any road in such cities will be roughly as important as any other

road. Conversely, cities which have low normalized entropy values will be

more complex and difficult to search due to the presence of remote regions

which are sparsely connected to the main network.

The same applies to the Gini coefficient; cities which have a couple of re-

ally popular roads and few unpopular ones will have higher Gini coefficients

compared to cities which have near-constant street popularity distributions.

The coefficient of variation (CV), which is the ratio of standard deviation

to the mean, is a dimensionless property of a distribution that is robust to

changes in data size. It allows for the compare the spread of values relative

to the mean in different distributions.

4.4.1 Eigenvector Centrality

The networkx eigenvector centrality function returns a unit vector (i.e. a

vector with a magnitude of one); to remove the bias caused by varying

vector dimensions, each vector is normalized with respect to the magnitude

of its components. The sum of the components’ magnitudes in the resulting

normalized unit vector is one.

Given two unit vectors spanning different dimensions:

v̂1 = a1ê1 + b1ê2 + ...+m1êm (4.1)

and
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v̂2 = a2ê1 + b2ê2 + ...+ n2ên (4.2)

where n 6= m and êi represents a unit vector for dimension i.

These vectors, despite having equal magnitudes of one; have different

numbers of components. This implies that the components of v̂1 will have

relatively higher magnitudes compared to those of v̂2 if m < n and vice

versa. This is due to the reduction in component magnitudes due to the

increased number of dimensional projections.

To account for this bias, we normalized the entropy of each city against

the entropy of a fully connected vector having the same dimension. The

fully connected graph is the graph in which all possible pairs of nodes are

connected. The eigenvector centrality distribution for such a graph is uni-

form and dependent on the number of nodes in the graph: every node has

a centrality value equivalent to 1/N .

The eigenvector centrality values for a fully-connected graph containing

N nodes is a vector with each component having magnitude 1/N . This

vector can be represented as

v = a1ê1 + a2ê2 + · · ·+ anên (4.3)

where a1 = a2 = · · · = an = 1
N .

The magnitude of this vector, |v| =
√
a2

1 + a2
2 + · · ·+ a2

N . However,

since each component’s magnitude is the same; |v| = a
√
N

Thus the unit vector of this matrix will be:

v̂ = a
a
√
N

ê1 + a
a
√
N

ê2 + · · ·+ a
a
√
N

ên

= ê1√
N

+ ê2√
N

+ · · ·+ êN√
N

(4.4)
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Assuming, the sum of the components’ magnitudes is S, then

S =
∑N

i=1
1√
N

= N√
N

=
√
N

(4.5)

The final step which involves normalizing this vector based on S (i.e.

dividing each component’s magnitude by the value
√
N so that all compo-

nents add up to unity) gives the vector, v̂ = ê1
N + ê2

N + · · ·+ êN
N . The entropy

of this vector H = −
∑n

i=1 P (xi) logP (xi) but P (xi) = 1/N where N is the

number of nodes; therefore, H is:

H = −
∑n

i=1 P (xi) logP (xi)

= −N ∗ 1/N ∗ log (1/N)

= − log 1
N

= logN

(4.6)

Thus, the entropy of a unit vector that is normalized by magnitude is

equivalent to the logN where N is the number of nodes in the graph. It

should be noted that the division of components to normalize values does

not affect the original vectors’ characteristics as the resulting vectors are

scalar multiples of the original underlying unit vectors. The normalized

entropy values are calculated by dividing the entropy values obtained from

the original city of N nodes by logN .

The Gini coefficient measures the inequality in a distribution: a Gini

coefficient value of 0 implies that there is no variation in the distribution

while a Gini coefficient of 1 implies the maximum possible skew in the dis-

tribution with only one value having the highest property values. The Gini

coefficient of a distribution is calculated as:
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G =

∑n
i=1

∑n
j=1 |xi − xj |
2n2x

(4.7)

Using this formula, we calculate the Gini coefficients for the eigenvec-

tor distributions. Gini values were not normalized because the completely

connected Graphs had Gini coefficients of 0.

The coefficient-of-variation (CV) of the distribution is also calculated, it

is the ratio of the standard deviation to the mean and this is a measure of

how the values in the distribution are dispersed around the mean. The CV

is a “dimensionless” measure as it does not depend on the number of values

in the distribution - in our case, the number of streets in the city. Thus, it

can be used to compare varying distributions. The CV of a distribution is

given by:

CV =
σ

µ
(4.8)

The degree centralizations for each of the graphs is calculated using the

Freeman general formula [14]; this measure was chosen because it gives a

measure of the importance of the most central node in a graph relative to

other nodes; as such it can be used to infer the layout of a network. Star

networks have the highest possible value of one while other networks have

smaller values.

Table 4.1 provides a summary of the various measures and their signifi-

cance.

4.4.2 Experiments Using Artificial Data

To test our assumption that the Gini coefficient of a graph will be low when

the variation in the graph’s eigenvector centrality values is low; and high

otherwise, we ran our process on four artificially generated graphs.
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City Net-
work Mea-
sure

Formula Interpretation Significance

Entropy H =
−
∑n

i=1 P (xi) logP (xi)
Random distribu-
tions have high
entropy values
while biased
distributions
have low entropy
values

Cities with high entropy
values (due to equally
important streets) will
be easy to search while
low-entropy cities will
contain hard-to-reach
nooks and crannies and
should be difficult to
search.

Gini coeffi-
cient

G =
∑n

i=1

∑n
j=1 |xi−xj |

2n2x̄
Measures the
inequality present
in a distribution:
high values indi-
cate a bias while
low values imply
broadly equal
values

Cities with high Gini
coefficient values will
contain remote places
that are less known
while cities with low
values should be easy to
search. The Gini coef-
ficient, in this scenario,
is the opposite of the en-
tropy measure.

Coefficient
of variation
(CV)

CV = σ
µ The CV measures

how the values
of a distribution
vary about the
distributions’
mean.

High CV values indicate
a huge variation in road
importance and popu-
larity while low CV in-
dicate small variation in
city centrality values.

Freeman
degree cen-
tralization

CD (G) =∑n
i=1[CD(nmax)−CD(ni)]

(N−1)(N−2)

The Freeman
degree central-
ization measures
how much the de-
gree of the most
connected node in
a network exceeds
the degree of
other nodes in
the network.

Can be used to measure
the layout of a city net-
work, star/wheel net-
works have the maxi-
mum possible of 1 while
a complete graph has
zero.

Table 4.1: Graph measures and their significance



CHAPTER 4. METHODS 40

We generated four different graphs: a cycle graph, a grid graph, a random

graph and a Barabasi-Albert graph.

Barabasi-Albert Model The Barabasi-Albert random graph generator

[2] creates random scale-free graphs using a preferential attachment model.

As these graphs grow larger, some nodes end up getting a higher degree.

Cycle Graph The cycle graph [39] consists of a closed chain of nodes; it

is a connected graph and every node in the graph has exactly two edges.

Grid Graph The Grid graph [62] can be represented as a lattice or grid

and hence the name; it is obtained from the Cartesian product of two linear

graphs. For our experiments, we generated only square grid graphs.

Random Graph The random graph was included as a control; for each

random graph of N nodes, we chose edges in the range [N,N2]. Fig. 4.2

shows visualizations of the generated graphs.

The Gini coefficient decreased in general for the graphs as the number

of nodes increased. However, the Barabasi-Albert graph stood out as its

Gini coefficient increased with increasing number of nodes. The Barabasi-

Albert model has increasing Gini coefficient values because it is based on

the principle of preferential attachment; as such some nodes end up with

relatively high degrees as the graph grows larger. Fig. 4.3 shows how the

Gini coefficient varies with the number of nodes.

4.5 Processed Data Characteristics

This section describes the characteristics of the processed city data.
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(a) A 15-node cycle graph (b) A 15-node random graph

(c) A 15-node Barabasi-Albert graph (d) A 16-node grid graph

Figure 4.2: Generated Graphs Visualizations

4.5.1 Scale-Free Behaviour

The cities (N = 148) were analysed for scale-free behaviour, this was done

by fitting power law models to the degree distribution of the roads of each

city. The generated fits showed that nearly all the cities do not exhibit

scale-free properties; however, this is expected: similar work by [28] showed

that dual graph representation of cities using the named-street approach do

not exhibit scale free characteristics.
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Figure 4.3: Gini vs Number of Nodes for generated graphs

4.5.2 Excluded Cities

Some cities (N = 2) did not converge and had no eigenvector centralities.

A couple of other cities (N = 10) had zeros in their centrality distribution,

a review of the nodes with zeros showed that they were not connected to

the giant component of each graphs. All cities that fell into both categories

were excluded from the experiments.

4.5.3 City Groupings

The continental and structural classes (planned, unplanned and partly planned)

for 120 cities was manually retrieved from Internet sources. These informa-

tion was used to segregate the cities into exclusive groups. Figs. 4.4 and

4.5 show the density plots of the cities’ data based on their continental and
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Distributions of Variability Measures by Continent
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Figure 4.4: Distribution of Calculated Metrics by Continent (N=120)

structural groupings respectively.

4.5.4 Intra-Metric Correlations

Fig. 4.6 simultaneously shows the scatter plot and correlation information

between all pairs of calculated metrics. The following pairs of metrics have

quite strong correlations (r(120) ≥ 0.7), (Gini coefficient, Freeman degree

centralization), (Gini coefficient, entropy), (entropy, coefficient of variation)

while the weakest correlation is found in the pair (coefficient of variation,

Freeman degree centralization).

The high correlation between the Gini coefficient and the entropy can be

explained by the fact that both are measures of inequality in distribution.

For distributions with highly random data, the entropy will be high while

the Gini will be low; the converse relationship also holds for the reverse case.
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Distributions of Variability Measures by Structure
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Figure 4.5: Distribution of Calculated Metrics by Structure (N=120)

Hence the reason for the strong negative correlation between both measures.

The Freeman degree centralization is a measure of how the node with

the highest degree exceeds all other nodes in the network with respect to

its degree. For networks having a star-like structure, this value will be very

high (i.e. close to the maximum of 1). This implies that cities with high Gini

coefficient values should have high Freeman degree centralization; however,

the large number of roads in all the cities make these values disproportion-

ately minute. Moreover, cities do not necessarily need to have a star-like

structure to have high Gini values.

The correlation between the entropy and the coefficient of variation can

also be explained thus. A high entropy means that most of the eigenvector

centrality values are similar and as such the variation in values will be low.

On the other hand, if the entropy is low, then some streets are more popular
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and have higher centrality values relative to the others. Consequently, the

distribution of eigenvector centrality values will be skewed by these larger

values and this will in turn lead to higher coefficients of variation.

The low correlation observed between the Freeman degree centralization

and the coefficient of variation can be explained in terms of what both

metrics measure. The Freeman degree centralization is based on the degree

of the most connected node in the graph while the coefficient of variation

takes into consideration the dispersion of all values in the graph. As such,

the coefficient of variation is much more robust to changes and this will

imply that there is little or no correlation between both of them.
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Results

5.1 Experimental Results

The eigenvector centrality vector captures the likelihood of a bunch of ran-

dom searchers bumping into a target located in any given street. Maximum

entropy corresponds to a situation in which all search paths are equally

probable, thus making it difficult for a target to hide in a street that is less

frequented by people (say a small dark alley). Lower entropy, on the other

hand, corresponds to a situation with far more variation in the probability

of different streets being searched. It is interesting to note that both Lon-

don and Stockholm, the cities in which the tag challenge winning team [46]

failed to find the target, have the lowest entropy values in the histogram of

entropy values 5.1.

The Gini coefficient is a measure of statistical dispersion (or inequal-

ity). It is always in the interval [0,1], making it easy to compare cities of

47
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Figure 5.1: Entropy Distribution for 136 cities
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different sizes. In the context of urban information gathering, lower Gini

coefficient corresponds to a situation with small variations in the proba-

bility of searching every street by random searchers. High Gini coefficient

values correspond to a situation with high variation, in which some streets

are searched particularly frequently at the expense of other streets. The

observation that both London and Stockholm have higher Gini coefficients

compared to the other cities of the tag challenge is also consistent with this:

the Gini histogram, 5.2 shows the distribution of Gini values and the tag

challenge cities.

The relatively high values of the Gini coefficient coupled with the rela-

tively low entropy values of the eigenvector centralities of London and Stock-

holm provide a potential explanation for the difficulty of searching these

cities. These results attribute the search difficulty to variations in centrali-

ties of different streets, making it possible to miss people unless they took

highly popular routes.

Experiments on artificially generated graphs showed some relationship

between the number of nodes in a graph and the entropy of its eigenvector

centrality; we tried to determine if other metrics could be used to identify

trends in cities. The population and area of each city were retrieved from

the reported values in [1]. The founding century for each city was retrieved

from data available on Wikipedia1. Crime data for 34 American cities were

retrieved from the US census website2.

1www.wikipedia.com
2https://www.census.gov/compendia/statab/cats/law_enforcement_

courts_prisons/crimes_and_crime_rates.html

www.wikipedia.com
https://www.census.gov/compendia/statab/cats/law_enforcement _courts_prisons/crimes_and_crime_rates.html
https://www.census.gov/compendia/statab/cats/law_enforcement _courts_prisons/crimes_and_crime_rates.html
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Figure 5.3: Entropy vs Founding Century for 134 cities

Entropy, Gini coefficients and Founding Century

The entropy of a city is strongly correlated to its founding century (r(134) =

0.53, p < .05). Similarly, the Gini coefficient of a city is negatively correlated

to its founding Century, (r(134) = −0.38, p < .05).

The plots (Figs. 5.3 and 5.4) show that entropy generally increases as

the age of the city reduces - this can be explained by the fact that newer

cities are better planned than older ones. The reverse analogy also holds for

the Gini coefficient as older cities are found to have high Gini values.

This explains why North American cities (which are mostly located in

the USA) have higher entropies (and lower Gini coefficients) than European

and Asian cities. American cities are quite younger than their counterparts

in most cases and are thus mostly better planned.
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Figure 5.4: Gini coefficient vs Founding Century for 134 cities

Property Crime and Coefficient of Variation (American Cities)

Property Crime was found to be negatively correlated (r(30) = −0.49, p <

.01) to the Coefficient of Variation, Fig. 5.5 shows the correlation.

We removed the outliers to determine how robust the measurements

would be and obtained the following plot 5.6. There was still a strong

(albeit smaller) negative correlation (r(26) = −0.31, p > .05) between the

Property Crime and the Coefficient of Variation; however since the p value

was greater than 0.5, the observed correlation is probably due to chance or

caused by random variation in the data.

Looking at the full plots (containing the outliers), it is interesting to see

that 24% of variation in the property crime rate is explained by the coeffi-

cient of variation. This behaviour can be explained thus: low coefficients of
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Figure 5.5: Property Crime vs Coefficient of Variation (N = 32)
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variation indicate that variations in centralities are low and thus nearly all

roads have similar importance while high values signify otherwise.

We speculate that the reason for high crime rates in areas with low co-

efficient of variation can be explained by the broken windows theory [29].

Buildings located in crime-infested areas tend to get burgled; its even eas-

ier for malicious elements to move around if all nearby roads are equally

accessible. Thus, it is possible for crime to appear to ’spread’ in these areas.

Other data: Population and Area

The same metrics were plotted against the populations and areas of the

cities; however we could find no explicit trends in these plots.

The absence of an observed trend with respect to city areas is most

probably due to the experimental approach. All experiments are based on

dual graphs which ignore distances between roads; as such taking area as a

predictor of the entropy (or Gini coefficient) distribution might not work.

The area of a city plays a little role in determining which of its constituent

roads are most important or its layout: no matter the size of a city some

roads always have high thoroughfare.

The same reasoning applies to the population plots; some cities have high

populations because of their economic importance or strategic locations (e.g.

New York) while others have low populations. It becomes relatively difficult

to find correlations between both.

5.2 Statistical Analysis

We carried out statistical tests to investigate the observed relationships be-

tween the city groupings (continental and structure).
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Figure 5.7: Box plots of continental Gini coefficient values

5.2.1 Gini Coefficients Across Measures

These tests investigate the Gini coefficients across continents and City Struc-

tures.

Gini Coefficients Across Continents

The box plot in Fig. 5.7 shows the distribution of the Gini coefficients

by continents; as explained earlier, for North American cities have Gini

coefficients that are lower than those of Asian and European cities.

The median, upper quartile and lower quartile values for North American

cities are lower than those of Asian and European cities. Although the

whiskers of all plots overlap, North American cities generally appear to

have lower values.

A Kruskal-Wallis test of the various groups revealed that there was a sig-
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Figure 5.8: Box plots of Gini Coefficient values for City Structural Types

nificant difference between the Gini coefficient values (H(2) = 44.6593, p <

0.05). There is a significant statistical difference between the Gini distri-

butions for North American (N = 45,M = 0.901, SD = 0.48) and Asian

(N = 28,M = 0.939, SD = 0.42) cities as well as North American and Eu-

ropean cities (N = 47,M = 0.962, SD = 0.49); however, there is little or no

significant difference between the values for Asian and European cities.

Gini Coefficients Across City Structures

The Gini coefficients do not vary much across the various structural types;

the box plots 5.8 make this obvious as the boxes for all three categories

overlap.

The results of the Kruskal-Wallis test of this data revealed no significant

difference between the Gini coefficient values (H(2) = 2.0718, p > 0.05).
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This is probably due to the high variance in the distribution samples sizes

(planned(N = 16,M = 0.944, SD = 0.34), partly planned(N = 15,M =

0.928, SD = 0.33) and unplanned(N = 89,M = 0.933, SD = 0.44)).

5.2.2 Entropy Values Across Measures

These tests investigate the entropy values across continents and City Struc-

tures.

Entropy Across Continents

We tried to prove that the entropy of North American cities is higher than

those of the other two categories by showing that there is a significant dif-

ference between the three distributions.

The box plot 5.9 shows the distribution of entropy values by continents;

the values for North American cities are higher than those of Asia and

Europe - the only over laps occur in the whisker regions. Also, the box

plots for Europe and Asia overlap significantly and have similar medians

and lower quartiles.

The Kruskal-Wallis test of the groups (H(2) = 51.6169, p < 0.05) showed

that the entropy values of North American cities (N = 45,M = 0.901, SD =

0.49) was significantly different from those of Asian (N = 28,M = 0.658, SD =

0.42) and European cities (N = 47,M = 0.639, SD = 0.49). Similar to the

Gini coefficient results, there is no statistically significant difference between

values for European and Asian cities.

Entropy Across City Structures

The entropy values do not vary a lot across structural forms; this is expected

as the Gini coefficients did not display significant deviations too. The box
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Figure 5.9: Box plots of Continental Entropy values

plots 5.10 all appear to have broadly similar upper and lower quartiles al-

though the medians vary. It is interesting to see that unplanned cities have

the highest range and also a set of outliers of extremely low entropy values;

these outliers (which are all lower than the single outlier for partly-planned

cities) imply that unplanned cities (N = 89)can be really difficult to search.

To prove that there is no major variation in the data, we run statis-

tical analysis of the data. The Kruskal-Wallis test revealed no significant

difference between the entropy values (H(2) = 2.1987, p > 0.05). This con-

firms our earlier views and can be explained by the high variance in the

distribution samples sizes (planned(N = 16,M = 0.698, SD = 0.34), partly

planned(N = 15,M = 0.719, SD = 0.33) and unplanned(N = 89,M =

0.682, SD = 0.44)).
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Figure 5.10: Box plots of Entropy values for City Structural Types



CHAPTER 6

Conclusion

Analysing city networks is important because it provides us with a way

to measure the development of cities, identify potential hotspots, monitor

the distribution and allocation of resources such as wealth, security forces

and influences the planning and development of new infrastructure. It also

provides us with a way to identify the challenges citizens might face in terms

of mobility and transportation and enables models that aim to solve this to

be built.

This research presents the results of the complexity analysis of various

cities around the world. Cities have varying layouts and designs - some are

highly structured while others can be random; finding out the complexities of

the city layouts is important and very useful in fighting crime, city planning

and in search and rescue missions.

The complexity of a city was calculated by analyzing the dual graph of

the city’s road layout retrieved from openstreetmaps. The dual graph ap-

59
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proach was chosen for complexity analysis because it enhances the detection

of latent information while still preserving topographical characteristics.

The eigenvector centrality for each graph serves as a measure of the rel-

ative importance of each road. The entropy of the normalized eigenvector

centrality distribution of a city provided a metric for comparison. Results

showed that newer cities have lower entropy values in comparison to older

cities. Also, we found out that property crime is correlated to the dispersion

of eigenvector centralities across the mean; crime-infested areas containing

streets which have roughly the same importance ratings tend to have dis-

proportionately high levels of crime.

6.1 Applications

The complexity analysis described in this thesis will be extremely useful to

planners as it enables them see the potential outcome of new city designs

and how planning decisions will affect the inhabitants, these models can also

help in planning ’perfect’ cities and in the early identification of potential

trouble spots and areas. Such information can come in handy in search and

rescue missions and in finding fugitives.

Businesses can take advantage of these models to determine the best

locations to place billboards and adverts. Some businesses might benefit

from adverts placed in highly-central locations while others might be more

suited to areas that are remote.

This approach can be put to excellent use in the disaster response teams

and aid organizations to predict the complexity of a city by using another

city as a baseline; as such, it becomes easier to make estimates and plan

relief distribution and allocation. Our methods can be extended to other

fields (e.g. biological networks) which require the evaluation of networks
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across a wide variety of criteria.



APPENDIX A

Extra Plots

This appendix includes the plots that were generated during the process

runs. The figures below show scatter plots of the entropy and Gini coefficient

distributions for the cities in the study.

The cities of the tag challenge have been annotated and cities are coloured

by their continents.

62
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Figure A.1: Entropy vs founding century for 136 cities

Figure A.2: Gini vs founding century for 136 cities
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Abbreviations

CSV Comma Seperated Values

ICN Intersection Continuity Negotiation

ICT Information Communication Technology
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